AP Biology Gene Expression/Biotechnology REVIEW

Multiple Choice

Identify the choice that best completes the statement or answers the question.

- 1. Gene expression can be
 - a. regulated before transcription.
 - b. during transcription.
 - c. after transcription but before translation.
 - d. at or after translation.
 - e. All of the above
- _____ 2. _____ genes are expressed all of the time.
 - a. Inducible
 - b. Repressed
 - c. Activator
 - d. Constitutive
 - e. Clustered
 - 3. Bacterial viruses (phage)
 - a. can reproduce on their own.
 - b. require a host cell to replicate.
 - c. carry out metabolism.
 - d. have a plasma membrane.
 - e. are alive.
 - 4. Regulation of gene expression during the phage lytic cycle does not include
 - a. binding of a host RNA polymerase to a viral promoter.
 - b. stimulation of viral late gene transcription.
 - c. enhancement of the host's gene transcription.
 - d. enhancement of viral early gene transcription.
 - e. down regulation of the host's gene transcription.
 - 5. A retrovirus
 - a. has a double-stranded DNA genome.
 - b. has a single-stranded DNA genome.
 - c. has a double-stranded RNA genome.
 - d. encodes a reverse transcriptase.
 - e. integrates its genome directly into the host's genome.
 - _ 6. Structural genes
 - a. code for structural proteins.
 - b. are regulatory regions of DNA.
 - c. specify the primary structure (amino acid sequence) of proteins.
 - d. are always constitutively expressed.
 - e. are absent in eukaryotes.
 - 7. Operons
 - a. are common in eukaryotes.
 - b. consist of structural genes only.
 - c. consist of a promoter, an operator, structural genes, and a repressor gene.
 - d. consist of a promoter, an operator, and two (or more) structural genes.

- e. include inducer genes.
- 8. A(n) _____ _ operon is turned off unless needed.
 - a. repressible
 - b. constitutive
 - c. inducible
 - d. clustered
 - e. None of the above

9. A(n) ____ ____ operon is turned on unless *not* needed.

- a. repressible
- b. constitutive
- c. inducible
- d. clustered
- e. None of the above

10. The expression of the *lac* structural genes is ______ when lactose is absent from the culture medium and is _ when lactose is added because lactose binds to the _____ and inactivates it.

- a. low; high; lac repressor
- b. high; low; *lac* inducer
- c. low; high; *lac* promoter
- d. high; low; lac operator
- e. low; high; lac operator
- 11. _____ are present in prokaryotes and bind to and direct the polymerase to specific promoters.
 - a. Sigma factors
 - b. Sporulation proteins
 - c. Reverse transcriptatses
 - d. Proteases
 - e. Ribosomes
- 12. Prokaryotes and eukaryotes differ in transcription in that
 - a. there are three RNA polymerases in eukaryotes.
 - b. initiation of transcription is simpler in prokaryotes.
 - c. structural genes for a pathway are more likely to be clustered in prokaryotes.
 - d. eukaryotic promoters have a TATA box.
 - e. All of the above
- 13. Which of the following statements about RNA polymerase is true?
 - a. Bacteria use RNA polymerase III to transcribe tRNA and mRNA.
 - b. Eukaryotes use different RNA polymerases to transcribe rRNA and mRNA.
 - c. In eukaryotes, RNA polymerase II binds directly to the DNA promoter and initiates transcription.
 - d. Bacteria contain more regulatory sequences than eukaryotes.
 - Eukaryotes use RNA polymerase III to transcribe ribosomal RNA. e.
 - 14. In the initiation of the transcription of protein-coding genes in eukaryotes, ______ cannot bind directly to the ______. Initiation requires ______ and other regulatory proteins called "______." a. RNA polymerase I; TATA box; TFIID; transcription factors

 - b. RNA polymerase II; initiation site; TFIID; transcription factors
 - c. RNA polymerase III; initiation site; TFIID; initiation factors
 - d. RNA polymerase I; TATA box: initiation factors; TFIID
 - e. TFIID; RNA polymerase I; initiation site; transcription factors

- _ 15. Which of the following are *not* involved in the process of transcription?
 - a. RNA polymerase
 - b. Transcription factors
 - c. Promoters
 - d. TATA box
 - e. Ribosomes

_____ 16. DNA methylation

- a. is important in the development of mammalian embryos.
- b. may repress the transcription of genes.
- c. involves the modification of the pyrimidine cytosine.
- d. is abundant in promoters.
- e. All of the above

____ 17. Epigenetics may be defined as changes in the expression of a gene or set of genes by _____ and _____.

- a. transcription factors; DNA methylation
- b. chromosomal protein alteration; transcription factors
- c. DNA methylation; chromosomal protein alteration
- d. promoters; DNA methylation
- e. promoters; chromosomal protein alteration
- 18. Which of the following does *not* regulate gene expression after transcription?
 - a. MicroRNA
 - b. Translational repressor proteins
 - c. Modifications to the G cap
 - d. Alternative splicing
 - e. All of the above regulate gene expression.
 - 19. An enzyme adds a(n) ______ tag to proteins that are recognized by proteasomes for destruction.
 - a. methionine
 - b. lactate
 - c. ubiquitin
 - d. phosphate
 - e. methyl
- 20. Predict what would happen to the synthesis of the enzyme HMG CoA reductase (an enzyme that catalyzes an initial step in the synthesis of cholesterol) if trichostatin A, a histone deacetylase inhibitor, is added to liver cells.
 - a. The amount of HMG CoA reductase increases.
 - b. The amount of HMG CoA reductase decreases.
 - c. The HMG CoA reductase levels do not change.
 - d. The HMG CoA reductase undergoes a conformational change and loses function.
 - e. None of the above
 - _ 21. "Sticky ends"
 - a. are produced by the action of all restriction enzymes.
 - b. form associations with complementary DNA that are very stable.
 - c. are the result of staggered cuts of DNA by restriction enzymes.
 - d. must interact with each other in the formation of recombinant DNA.
 - e. have non-specific base sequences.
 - 22. Restriction enzymes

- a. cleave DNA at sequence-specific sites.
- b. are called restriction enzymes because they restrict the range of viruses that can attack a bacterial species.
- c. do not cut the host bacterium's DNA.
- d. are essential tools in molecular biology.
- e. All of the above

_____ 23. Restriction enzymes

- a. cut single-stranded DNA.
- b. cut double-stranded DNA at any palindromic sequence.
- c. cleave DNA to very small pieces.
- d. cleave double-stranded DNA at specific palindromic sequences.
- e. have been isolated from just a few species of microrganisms.
- _____ 24. In gel electrophoresis of DNA fragments,
 - a. the fragments migrate towards the cathode (negative charge).
 - b. the fragments are separated based on their charge differences.
 - c. the fragments are separated on the basis of their sizes.
 - d. the fragments migrate towards the anode (positive charge) because of the positive charge of the bases.
 - e. large fragments migrate more quickly than small fragments.
- _____ 25. The function of DNA ligase in the generation of recombinant DNA is to
 - a. cut DNA.
 - b. replicate DNA.
 - c. unwind DNA.
 - d. join DNA fragments by the formation of phosphodiester bonds.
 - e. join DNA fragments noncovalently.
- _____ 26. Which of the following statements about bacterial antibiotic resistance genes is *false*?
 - a. They are usually present in the bacterial large circular genome.
 - b. They were used by Cohen and Boyer in their first recombinant DNA experiments.
 - c. They are convenient selectable markers.
 - d. They can confer antibiotic resistance to other prokaryotes.
 - e. They are importance to medicine.
- _____ 27. A host cell or organism that contains recombinant DNA is referred to as a ______ cell or organism.
 - a. transfected
 - b. transformed
 - c. transgenic
 - d. chimeric
 - e. selectable
 - ____ 28. A plasmid
 - a. is the bacterial genome.
 - b. is a small, circular double-stranded DNA molecule that replicates autonomously.
 - c. is only recombinant.
 - d. does not code for proteins.
 - e. is double-stranded RNA.
 - 29. To replicate within the cells of a host, recombinant DNA must either _____ into the host's genome or contain a(n) _____. Otherwise the recombinant DNA would not be replicated, since _____ requires specific sequences to bind to DNA.

- a. integrate; origin of replication; DNA polymerase
- b. integrate; vector; DNA polymerase
- c. recombine; origin of replication; DNA ligase
- d. recombine; stop transcription signal; DNA polymerase
- e. integrate; stop transcription signal; DNA ligase
- _____ 30. In recombinant DNA technology, _____ may be used as a selectable marker or reporter gene.
 - a. *lacZ*
 - b. the GFP gene
 - c. *tet*
 - d. amp
 - e. All of the above
- _____ 31. The Ti plasmid
 - a. is derived from E. coli.
 - b. replicates in host cells.
 - c. is useful in introducing foreign DNA into yeasts.
 - d. is useful in introducing foreign DNA into plants.
 - e. is of viral origin.
 - ____ 32. cDNA libraries
 - a. are the same as genomic libraries.
 - b. include DNA from non-coding sequences.
 - c. require DNA polymerase to generate.
 - d. require reverse transcriptase to generate.
 - e. likely contain all protein-coding genes.
 - _____ 33. What information would you need to design a synthetic gene for a protein to be translated in yeast?
 - a. Primary structure of the protein and the genetic code
 - b. Primary structure and secondary structure of the protein, and the genetic code
 - c. Primary structure of the protein, the genetic code, and promoter sequence
 - d. Secondary structure of the protein, the genetic code, and promoter sequence
 - e. Primary structure of the protein and promoter sequence
 - 34. Complementary RNA
 - a. inhibits transcription.
 - b. forms hybrids with mRNA to prevent translation.
 - c. blocks DNA replication.
 - d. is sense RNA.
 - e. blocks translation by joining with rRNA.
 - 35. The RNA in RNAi (RNA interference) is
 - a. single stranded.
 - b. not made in vivo.
 - c. relatively stable in cells.
 - d. capable of binding to specific mRNAs.
 - e. Both c and d
 - - a. are used to analyze genomic DNA.
 - b. determine genes that are transcribed.
 - c. use oligoribonucleotides as probes.
 - d. probe noncoding regions of DNA.

- e. detect proteins that are translated.
- _____ 37. Biotechnology may perhaps best be described as
 - a. a branch of the science of molecular biology.
 - b. its own scientific discipline.
 - c. a collection of approaches to the exploitation of living systems to make useful products.
 - d. an industry to make products useful to medicine.
 - e. an industry to make products useful to agriculture.
- _____ 38. Recombinant DNA technology is *least* applicable to which of the following approaches?
 - a. The analysis of traits determined by multiple genes
 - b. Overexpression of a particular gene
 - c. Silencing a particular gene
 - d. Knocking out a particular gene
 - e. Targeting a protein to the nucleus
 - _ 39. Suppose that you wanted to express a protein from animal cells using recombinant DNA technology. Why might you prefer to use yeast as the host rather than *E. coli*?
 - a. Posttranslational protein processing in yeasts is similar to that in animals.
 - b. Yeast is a multicellular organism.
 - c. Yeast has a smaller genome than E. coli.
 - d. Yeast is a prokaryote.
 - e. Yeast is easier to cultivate than the bacterium.
- 40. Recombinant DNA technology has produced medically useful products. Most of these products are ______ that are normally present in low amounts in animals and are difficult to _____; _____ vectors are used to obtain these products in large amounts.
 - a. hormones; purify; expression
 - b. proteins; purify; expression
 - c. hormones; detect; plasmid
 - d. proteins; detect; plasmid
 - e. proteins; purify; plasmid
- - a. Pharming
 - b. Fishing
 - c. Quality control
 - d. Manufacturing
 - e. Gene expression
- 42. The use of biotechnological approaches for the improvement of crop plants has been more controversial than their use to prepare medically useful products. Why?
 - a. People eat food that could contain transgenes.
 - b. Crops are grown outside, and there is a chance that a transgene could escape to other organisms.
 - c. Herbicide-resistance could spread to weed species.
 - d. Beneficial insects could be harmed by plants expressing the BT toxin.
 - e. All of the above

AP Biology Gene Expression/Biotechnology REVIEW Answer Section

MULTIPLE CHOICE

1.		E PTS: 1 REF: Page 209 Concept 11.1 Several Strategies Are Used to Regulate Gene Expression
		1. Remembering
2		D PTS: 1 REF: Page 209
4.		Concept 11.1 Several Strategies Are Used to Regulate Gene Expression
		1. Remembering
3		B PTS: 1 REF: Page 210
5.		Concept 11.1 Several Strategies Are Used to Regulate Gene Expression
		2. Understanding
4.		C PTS: 1 REF: Page 210-211
		Concept 11.1 Several Strategies Are Used to Regulate Gene Expression
	SKL:	4. Analyzing
5.	ANS:	D PTS: 1 REF: Page 211
		Concept 11.1 Several Strategies Are Used to Regulate Gene Expression
		4. Analyzing
6.		C PTS: 1 REF: Page 213
		Concept 11.2 Many Prokaryotic Genes Are Regulated in Operons
_		1. Remembering
1.		D PTS: 1 REF: Page 213
		Concept 11.2 Many Prokaryotic Genes Are Regulated in Operons 3. Applying
8		C PTS: 1 REF: Page 213
0.		Concept 11.2 Many Prokaryotic Genes Are Regulated in Operons
		1. Remembering
9.	ANS:	A PTS: 1 REF: Page 213
	TOP:	Concept 11.2 Many Prokaryotic Genes Are Regulated in Operons
	SKL:	1. Remembering
10.		A PTS: 1 REF: Page 213-214
		Concept 11.2 Many Prokaryotic Genes Are Regulated in Operons
	SKL:	2. Understanding
11.		A PTS: 1 REF: Page 215
		Concept 11.2 Many Prokaryotic Genes Are Regulated in Operons
10		1. Remembering
12.		E PTS: 1 REF: Page 216 Concept 11.3 Eukaryotic Genes Are Regulated by Transcription Factors and DNA Changes
		2. Understanding
13	ANS:	
15.		Concept 11.3 Eukaryotic Genes Are Regulated by Transcription Factors and DNA Changes
		4. Analyzing
14.	ANS:	• •
		Concept 11.3 Eukaryotic Genes Are Regulated by Transcription Factors and DNA Changes
	SKL:	3. Applying
15.	ANS:	E PTS: 1 REF: Page 216-217

		Concept 11.3 Eukaryotic Genes Are Regulated by Transcription Factors and DNA Changes
	SKL:	2. Understanding
16.		E PTS: 1 REF: Page 218-219
	TOP:	Concept 11.3 Eukaryotic Genes Are Regulated by Transcription Factors and DNA Changes
	SKL:	2. Understanding
17.		C PTS: 1 REF: Page 218-220
		Concept 11.3 Eukaryotic Genes Are Regulated by Transcription Factors and DNA Changes
		1. Remembering
18.		E PTS: 1 REF: Page 221-223
		Concept 11.4 Eukaryotic Gene Expression Can Be Regulated after Transcription
		2. Understanding
19.	ANS:	e
		Concept 11.4 Eukaryotic Gene Expression Can Be Regulated after Transcription
		1. Remembering
20.		A PTS: 1 REF: Page 224
		Concept 11.4 Eukaryotic Gene Expression Can Be Regulated after Transcription
		3. Applying
21.	ANS:	
		Concept 13.1 Recombinant DNA Can Be Made in the Laboratory
		2. Understanding
22.		E PTS: 1 REF: Page 245
		Concept 13.1 Recombinant DNA Can Be Made in the Laboratory
		2. Understanding
23.		D PTS: 1 REF: Page 245
		Concept 13.1 Recombinant DNA Can Be Made in the Laboratory
24		2. Understanding
24.		C PTS: 1 REF: Page 246
		Concept 13.1 Recombinant DNA Can Be Made in the Laboratory
25		2. Understanding D PTS: 1 REF: Page 247
23.		D PTS: 1 REF: Page 247 Concept 13.1 Recombinant DNA Can Be Made in the Laboratory
		4. Analyzing
26		A PTS: 1 REF: Page 247-248
20.		Concept 13.2 DNA Can Genetically Transform Cells and Organisms
		2. Understanding
27	ANS:	-
21.		Concept 13.2 DNA Can Genetically Transform Cells and Organisms
		1. Remembering
28	ANS:	-
20.		Concept 13.2 DNA Can Genetically Transform Cells and Organisms
		1. Remembering
29.	ANS:	
_>.		Concept 13.2 DNA Can Genetically Transform Cells and Organisms
		4. Analyzing
30.	ANS:	
		Concept 13.2 DNA Can Genetically Transform Cells and Organisms
		1. Remembering
31.	ANS:	-
	TOP:	Concept 13.2 DNA Can Genetically Transform Cells and Organisms

	SKL:	1. Remembering
32.	ANS:	D PTS: 1 REF: Page 252
	TOP:	Concept 13.3 Genes and Gene Expression Can Be Manipulated
	SKL:	4. Analyzing
33.	ANS:	C PTS: 1 REF: Page 252-253
		Concept 13.3 Genes and Gene Expression Can Be Manipulated
		4. Analyzing
34.		B PTS: 1 REF: Page 254
		Concept 13.3 Genes and Gene Expression Can Be Manipulated
		2. Understanding
35.		E PTS: 1 REF: Page 254
		Concept 13.3 Genes and Gene Expression Can Be Manipulated
		2. Understanding
36.		B PTS: 1 REF: Page 254-255
		Concept 13.3 Genes and Gene Expression Can Be Manipulated
~ -		4. Analyzing
37.		C PTS: 1 REF: Page 255
20		Concept 13.4 Biotechnology Has Wide Applications SKL: 2. Understanding
38.		A PTS: 1 REF: Page 255-258
20		Concept 13.4 Biotechnology Has Wide Applications SKL: 4. Analyzing
39.		A PTS: 1 REF: Page 256
40		Concept 13.4 Biotechnology Has Wide Applications SKL: 4. Analyzing
40.		B PTS: 1 REF: Page 256-257
41		Concept 13.4 Biotechnology Has Wide Applications SKL: 2. Understanding
41.		A PTS: 1 REF: Page 257-258
10		Concept 13.4 Biotechnology Has Wide ApplicationsSKL: 1. RememberingEPTS: 1REF: Page 258-261
42.		e e e e e e e e e e e e e e e e e e e
	TOP:	Concept 13.4 Biotechnology Has Wide Applications SKL: 4. Analyzing